Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons.
نویسندگان
چکیده
The mitotic checkpoint is the major cell cycle checkpoint acting during mitosis to prevent aneuploidy and chromosomal instability, which are hallmarks of tumor cells. Reduced expression of the mitotic checkpoint component Mad1 causes aneuploidy and promotes tumors in mice [Iwanaga Y, et al. (2007) Cancer Res 67:160-166]. However, the prevalence and consequences of Mad1 overexpression are currently unclear. Here we show that Mad1 is frequently overexpressed in human cancers and that Mad1 up-regulation is a marker of poor prognosis. Overexpression of Mad1 causes aneuploidy and chromosomal instability through weakening mitotic checkpoint signaling caused by mislocalization of the Mad1 binding partner Mad2. Cells overexpressing Mad1 are resistant to microtubule poisons, including currently used chemotherapeutic agents. These results suggest that levels of Mad1 must be tightly regulated to prevent aneuploidy and transformation and that Mad1 up-regulation may promote tumors and cause resistance to current therapies.
منابع مشابه
Pap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.
The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...
متن کاملCheckpoint-Independent Stabilization of Kinetochore-Microtubule Attachments by Mad2 in Human Cells
Faithful chromosome segregation is required for cell and organism viability and relies on both the mitotic checkpoint and the machinery that corrects kinetochore-microtubule (k-MT) attachment errors. Most solid tumors have aneuploid karyotypes and many missegregate chromosomes at high rates in a phenomenon called chromosomal instability (CIN). Mad2 is essential for mitotic checkpoint function a...
متن کاملThe Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer.
Cancer cells are commonly aneuploid. The spindle checkpoint ensures accurate chromosome segregation by controlling cell cycle progression in response to aberrant microtubule-kinetochore attachment. Damage to the checkpoint, which is a partial loss or gain of checkpoint function, leads to aneuploidy during tumorigenesis. One form of damage is a change in levels of the checkpoint proteins mitotic...
متن کاملJcb_201311113 1..8
The mitotic checkpoint inhibits the anaphase promoting complex/cyclosome (APC/C) in the presence of unattached kinetochores and silences this inhibition once all kinetochores are stably attached to spindle microtubules. Checkpoint activity (i.e., APC/C inhibition) and silencing are correlated with changes in the kinetochore localization of checkpoint proteins, including Mad1, Mad2, Bub1, BubR1,...
متن کاملEnhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice.
Aneuploidy is defined as numerical abnormalities of chromosomes and is frequently (>90%) present in solid tumors. In general, tumor cells become increasingly aneuploid with tumor progression. It has been proposed that enhanced genomic instability at least contributes significantly to, if not requires, tumor progression. Two major modes for genomic instability are microsatellite instability (MIN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 33 شماره
صفحات -
تاریخ انتشار 2012